MegaBanner-Right

MegaBanner-Left

LeaderBoad-Right

LeaderBoard-Left

Home » Industry News » Corrosion, Abrasion Control & Specialised Coatings News » New protective coating for marine steel

New protective coating for marine steel

Scientists develop new anti-corrosion coating to increase the economic life and durability of steel machinery in an environment-friendly manner.

ALTHOUGH steel is widely used in industry, its low corrosion resistance limits the life of the equipment and hinders certain applications such as shipping and implementation of marine technologies. Now, researchers from the Korea National Ocean and Maritime University have developed a new aluminium-magnesium-silicon (Al-Mg-Si) alloy that can greatly increase the corrosion resistance of steel.

One of the most common methods of improving the corrosion resistance of steel is coating it with other metals such as aluminium (Al). But the use of Al in marine applications is limited owing to its tendency to react with chloride ions in sea water, leading to corrosion. The addition of other elements, such as magnesium (Mg) and silicon (Si), to form an alloyed coating is a promising way around this problem. But Mg cannot be easily deposited as a coating using the conventional method of dipping the steel into a hot bath of metal salts.

In a recent study published in Corrosion Science, scientists have developed a new protocol for Al-Mg-Si coating of steel. “When I served in the navy, I was constantly looking at rusting machinery. Since then, I have become fully engaged in research on how to produce better anti-corrosive steels,” says Professor Myeong-Hoon Lee of the Korea National Maritime and Ocean University, who guided the study. This study was made available online on September 9, 2021 and was published in Volume 192 of the journal in November 2021.

In this study, the researchers took aluminized steel (with Al and Si) and then plated it with Mg using a technique called “physical vapour deposition.” This was then followed by exposing the coating to a high temperature of 375° C. They then characterized the coating film and performed corrosion testing in the form of a “salt spray test.” They found that the corrosion products were also formed in two layers: a surface layer made of primarily Al-based corrosion products, and an inner corrosion layer made of Al-, Mg-, and Si- based products. Moreover, the inner layer of corrosion products produced a “shielding effect,” which further improved their anti-corrosion properties.

“Our research reveals how a highly corrosion-resistant steel can be produced using a simple change in the surface treatment protocol. This makes it very meaningful for conserving energy and environmental resources,” explains Prof. Lee.

This new protocol for enhanced corrosion resistance in steel takes a bold but sure step towards a more sustainable future.

To enquire about Cape Business News' digital marketing options please contact sales@cbn.co.za

Related articles

Blast free corrosion and surface preparation treatment

Returning from an overseas principle convention in Belgium, MD of BAMR (Pty) Ltd. Graham Duk, revealed that its distributorship agreement with Monti Power Bristle...

Zinc is the perfect recyclable material

THE most common application of zinc is to protect steel from corrosion by hot-dip galvanizing. The zinc-steel combination has significant economic benefits in terms...

MUST READ

City delivering real change

Behind every budget line, every policy, and every project there are real people, real challenges, and a shared future we are shaping. In a...

RECOMMENDED

Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.

Strictly Necessary Cookies

Strictly Necessary Cookie should be enabled at all times so that we can save your preferences for cookie settings.

If you disable this cookie, we will not be able to save your preferences. This means that every time you visit this website you will need to enable or disable cookies again.